有关分数除法的生活小知识(分数除法该怎么除)

本文目录一览:

  • 1、分数除法知识点整理有哪些?
  • 2、分数除法知识点有哪些?
  • 3、六年级数学分数除法的知识点

分数除法知识点整理有哪些?

分数除法知识点整理有:

1、整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

2、分数除以整数的计算方法:把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

3、分数除以整数(0除外)的计算方法:用分子和整数相除的商做分子,分母不变。分数除以整数,等于分数乘这个整数的倒数。

4、一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。

5、商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0。

6、分数除加、除减的运算顺序:除加、除减混合运算,如果没有括号,先算除法,后算加减。

分数除法知识点有哪些?

分数除法知识点如下:

一、分数除法的意义:

分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数,商小于被除数:a÷b=c当b1时,c(a≠0)。

②除以小于1的数,商大于被除数:a÷b=c当b1时,ca(a≠0

b≠0)。

③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a。

三、分数除法混合运算

运算顺序:

①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

四、比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。

(1)用比的’前项和后项同时除以它们的最大公约数。

(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。

4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

五、分数除法和比的应用

1、已知单位“1”的量,用乘法。

2、未知单位“1”的量,用除法或列方程解答。

六年级数学分数除法的知识点

一、分数除法

1、分数除法的意义:

乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

规律(分数除法比较大小时):

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)当除数等于1,商等于被除数。

“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题

(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”: 单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思: 单位“1”的量×(1分率)=分率对应量

2、解法:(建议:最好用方程解答)

(1)方程: 根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的.量

3、求一个数是另一个数的几分之几:就 一个数÷另一个数

4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:

① 求多几分之几:大数÷小数 – 1

② 求少几分之几: 1 – 小数÷大数

三、比和比的应用

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

∶ ∶ ∶ ∶

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(2)用求比值的方法。注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = 3/2 = 3∶2

5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如: 已知两个量之比为,则设这两个量分别为。

路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

上一篇
下一篇

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

返回顶部