本文目录一览:
- 1、小学的数学知识点总结归纳
- 2、小学数学知识点总结(全部)
- 3、一年级数学知识点
- 4、小学数学的知识点
小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。
3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。
扩展资料:
整数
1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。
16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公因数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒
参考资料来源:百度百科-小学数学知识
参考资料来源:百度百科-小学数学
小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用”不确定的书籍阅读”.勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
一年级数学知识点
数学作为一门基础学科,其目的是为了培养学生的 理性思维 ,养成严谨的思考的习惯,对一个人的以后工作起到至关重要的作用,特别是在信息时代,可以说,数学与任何科学领域都是紧密结合起来的。
一年级数学 知识点
第一单元
准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的 方法 。
第二单元
位置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
第三单元
1-5的认识和加减法
一、1–5的认识
1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序
从前往后数:1、2、3、4、5.
从后往前数:5、4、3、2、1.
3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“”表示,即32,读作3大于2。前面的数小于后面的数,用“”表示,即34,读作3小于4。
2、填“”或“”时,开口对大数,尖角对小数。
三、第几
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的一个物体。
四、分与合
数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0
1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零
3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.
如:0+8=89-0=94-4=0
第四单元
认识图形
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。
如图:
2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。
如图:
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。
如图:
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
第五单元
6-10的认识和加减法
一、6—10的认识:
1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。
2、10以内数的顺序:
(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。
(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。
3、比较大小:按照数的顺序,后面的数总是比前面的数大。
4、序数含义:用来表示物体的次序,即第几个。
5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。
记忆数的组成时,可由一组数想到调换位置的另一组。
二、6—10的加减法
1、10以内加减法的计算方法:根据数的组成来计算。
2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。
3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。
三、连加连减
1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。
2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。
四、加减混合
加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。
第六单元
11-20各数的认识
1、数数:根据物体的个数,可以用11—20各数来表示。
2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、
3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法
(1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
如:10+5=1517-7=1018-10=8
(2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)、加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
第七单元
认识钟表
1、认识钟面
钟面:钟面上有12个数,有时针和分针。
分针:钟面上又细又长的指针叫分针。
时针:钟面上又粗又短的指针叫时针。
2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。
3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。
4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00
第八单元
20以内的进位加法
1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。
利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。
2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。
3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。
4、解决问题
(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。
(2)求总数的实际问题,用加法计算。
一年级 数学 学习方法
小学一年级的学习应以培养兴趣为主,只有在低年级时培养起良好的学习兴趣,养成良好的思维习惯,才能够在以后的学习中取得更快的进步。
这个阶段孩子需要积累的是,简单的运算知识和规律,简单图形的认识和分析能力,找规律,让孩子学会一种尝试的方法,简单的逻辑推理能力。
课堂上既想让他们学到知识又想让他们感到轻松有趣,所以对他们采取不同的教学方式,以 故事 、诗歌、 谜语 为载体来开展教学的,对孩子来说是在娱乐中学?习,并没有您想象中的那么枯燥、乏味。下面具体谈谈一年级孩子学数学的方法建议:
1、接触数学,兴趣第一。
我们接触过不少四五年级希望开始学习华数的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过数学的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小学六年级形势又不得不学。对于这样的学生,学习数学是有一定阴影的,甚至有些学生抱定了自己不适合学数学的念头,有一定抵触心理。
所以既然家长决定低年级开始学习数学,一定要首先注意兴趣上的培养,帮助他们找到数学中引起他们兴趣的事情,比如数字游戏等等。
2、找一位孩子最喜欢的老师。
既然刚刚接触数学,兴趣是第一位的,那找一位孩子喜欢的老师就是学习的重中之重。一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。?在课堂上,老师不仅是孩子的师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。
3、用一套最的教材。
通过长期的数学学习,可以使学生的数学学习能力和素质得到培养,思维能力、智力潜能得到很好的开发,现已被众多学有余力和学有兴趣的学生所青睐。数学?课程可以使您的孩子“开思维之窍,入解题之门”,帮助孩子奠定坚实的基础,攀登数学的颠峰!《小学数学练习机》里就有很多好教程。
4、从最合适的起点开始。
刚刚接触数学,学不懂不是孩子不适合学数学,是起点不合适。举个例子:《小学数学练习机》里有很多非常好的教程,但是里面的《秘笈》中的很多知识超前于学校的课本,如果利用的不好,很容易打击孩子的积极性和自信心,这是目前导致很多孩子不喜欢数学,厌恶数学的最主要的原因之一。
学习重点难点解析:
1、巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。另外,计算与速算是各种后续问题学习的基础。学好数学,首先就要过计算这关。
2、认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。
3、学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。在数学课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。枚举法训练的重点在于有序的 思维方式 ,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。
4、数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使数学学习更加系统。
一年级数学学习技巧
1.学好数学,必须掌握三个基本概念:基本概念、基本规律和基本方法。
2。在完成主题后,我们必须仔细 总结 并相互推论。这样,我们就不会花太多的时间和精力,当我们遇到同样的问题在未来。
3.一定要得到一个全面的对数学概念的理解,并且不能有偏见。
4.学习概念的最终目的是用概念来解决具体问题。因此,我们应该主动运用所学到的数学概念来分析和解决相关的数学问题。
5.我们应该掌握各种解决问题的方法,在实践中有意识地总结,慢慢培养合适的分析习惯。
6、要主动提高综合分析能力,利用文本阅读进行分析和理解。
7.在学习中,要注意有意识地转移知识,培养解决问题的能力。
8.为了贯穿我们所学到的形成一个系统的知识,我们可以使用类比关系方法。
9.每一章的内容都是相互关联的,不同章节之间的比较,以及前后的知识真正整合在一起,有助于我们更深入地理解知识体系和内容。
10.在数学学习中,通过对相似的概念或规律进行比较,找出它们的相同点、不同点和联系,从而加深它们的理解和记忆。明确数学知识之间的相互关系,深入理解数学知识的概念,了解数学知识的衍生过程,使知识有序、系统化。
11。学习数学不仅要关注问题,还要关注典型问题。
12。对于一些数学原理、定理公式,不仅记得其结论,了解这一结论。
13.学习数学,记住并正确描述概念和规律。
14.在学习过程中,要注重理解,解放思想,把抽象化为具体,逐步培养学习数学的兴趣。
15。对概念进行恰当的分类可以简化学习内容,突出重点,明确上下文,便于分析、比较、综合和概念。
16.数学学习是最忌讳的知识歧义,知识点被混淆在一起,为了避免这种情况,学生应该学会写“知识结构摘要”。
17.学会对问题类型进行划分和组合,学会从多角度、多方面分析和解决典型问题,并从中总结出基本问题类型和基本规律方法。
18.根据同一种数学知识之间的关系形成一个有机的整体,从而达到全局记忆的目的。
19.结合各种特殊培训的特点,更多的学生和教师进行交流,学习他人的智慧,节省时间,提高问题的速度和质量,提高反应能力。
20。学习数学应该是循序渐进的,只要我们打好基础,就可以逐步完善。
21。解决数学问题,关键是要建立正确的数学概念,从数学思维的角度来看,使用数学法则来解决。
22.认真听课是奠定数学基础的重要组成部分,也是牢固掌握基础知识的根本途径。
23.在解决这一问题时,可以尝试采用不同的方法,如假设法、特殊值法、整体法等。
24、要深刻认识知识点,认真研读课本,认真倾听,了解现实。
25.认真倾听,一方面可以更好地掌握知识背景,加深理解,另一方面,也可以学习教师分析问题,解决问题的思路。
26.当我听老师的评论时,我想先想一想如何做问题,然后看看老师的解决办法是否一样,也就是想想他们是否和老师一样。阅读并思考老师在黑板上解决问题的过程,想想他们是否能这样写,想想在解决问题的过程中是否有漏洞。
27.我们要注意三点:第一,学会用笔;第二,注意课后练习;第三,分层预习。
28.不要担心一个或多个课程的糟糕成绩。利用你的优势。他们可以帮助你重建信心,这是成功的第一个关键。
29。在课堂上,我们应该注意以下三点:第一,用心观察,紧跟教学思路;第二,善于做笔记;第三,积极回答问题,敢于提问。
30.如果你想真正的理解、认识和评价自己,要有勇气面对自己和展示自己。
一年级数学下册知识点相关 文章 :
★ 人教版一年级下册数学知识点归纳
★ 小学一年级数学下册的期末重点汇总
★ 人教版小学一年级数学下册的期末重点汇总
★ 小学一年级下册数学易错题与复习技巧
★ 一年级数学必考知识点总结
★ 人教版一年级数学下册复习资料
★ 编部一年级下册数学知识点
★ 小学一年级下数学考点
★ 人教版一年级下册数学
★ 一年级数学下册复习计划5篇
小学数学的知识点
一、小数部分:
1、把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。
2、小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数。
3、小数的读法:整数部分整数读,小数点读点,小数部分顺序读。
4、小数的写法:小数点写在个位右下角。
5、小数的性质:小数末尾添0去0大小不变。化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。
6、小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。
二、分数和百分数。
(一)分数和百分数的意义。
1、分数的意义:
把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。
2、百分数的意义:
表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。
3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。
4、成数:几成就是十分之几。
(二)分数的种类。
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数。
(三)分数和除法的关系及分数的基本性质。
1、除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
(四)约分和通分。
1、分子、分母是互质数的分数,叫做最简分数。
2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
三、倒数。
1、乘积是1的两个数互为倒数。
2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
3、1的倒数是1,0没有倒数
四、分数的大小比较。
1、分母相同的分数,分子大的那个分数就大。
2、分子相同的分数,分母小的那个分数就大。
3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
五、百分数与折数、成数的互化:
三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。
六、纳税和利息:
1、税率:应纳税额与各种收入的比率。
2、利率:利息与本金的百分率。由银行规定按年或按月计算。
3、利息的计算公式:利息=本金×利率×时间。
七、百分数与分数的区别主要有以下三点:
1、意义不同。
百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米是5米的20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系;还可以表示一定的数量。
2、应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
3、书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
八、数的整除。
1、整除的意义。
(1)整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。
(2)除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数。
(1)如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。
(2)一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
(3)一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
3、奇数和偶数。
(1)能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数。
(2)不能被2整除的数叫基数。例如:1、3、5、7、9……
4、整除的特征。
(1)能被2整除的数的特征:个位上是0、2、4、6、8。
(2)能被5整除的数的特征:个位上是0或5。
(3)能被3整除的数的特征:一个数的各个数位上的’数之和能被3整除,这个数就能被3整除。
5、质数和合数。
(1)一个数只有1和它本身两个约数,这个数叫做质数(素数)。
(2)一个数除了1和它本身外,还有别的约数,这个数叫做合数。
(3)1既不是质数,也不是合数。
(4)自然数按约数的个数可分为:质数、合数
(5)自然数按能否被2整除分为:奇数、偶数
6、分解质因数。
(1)每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。
(2)把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。
(3)几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。
(4)特殊情况下几个数的最大公约数和最小公倍数。
①如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。
②如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。
7、奇数和偶数的运算性质:
(1)相邻两个自然数之和是奇数,之积是偶数。
(2)奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数—奇数=偶数,奇数—偶数=奇数,偶数—奇数=奇数,偶数—偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
九、整数、小学、分数四则混合运算。
(一)四则运算的法则。
1、加法a、整数和小数:
相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加
2、减法a、整数和小数:
相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减
3、乘法a、整数和小数:
用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简
4、除法a、整数和小数:
除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数
(二)运算定律。
1、加法交换律:a+b=b+a
2、结合律:(a+b)+c=a+(b+c)
3、减法性质:
(1)a-b-c=a-(b+c)
(2)a-(b-c)=a-b+c
4、乘法交换律:a×b=b×a
5、结合律:(a×b)×c=a×(b×c)
6、分配律:(a+b)×c=a×c+b×c
7、除法性质:
(1)a÷(b×c)=a÷b÷c
(2)a÷(b÷c)=a÷b×c
(3)(a+b)÷c=a÷c+b÷c
(4)(a-b)÷c=a÷c-b÷c
商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
(三)积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。
(四)商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。
(五)利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。
十、简易方程。
(一)用字母表示数。
用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。
(二)用字母表示数的注意事项。
1、数字与字母、字母和字母相乘时,乘号可以简写成“·“或省略不写。数与数相乘,乘号不能省略。
2、当1和任何字母相乘时,“ 1” 省略不写。
3、数字和字母相乘时,将数字写在字母前面。
(三)含有字母的式子及求值。
求含有字母的式子的值或利用公式求值,应注意书写格式。
(四)等式与方程。
表示相等关系的式子叫等式。含有未知数的等式叫方程。
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。
(五)方程的解和解方程。
使方程左右两边相等的未知数的值,叫方程的解。求方程的解的过程叫解方程。
(六)在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。
(七)解方程的方法。
1、直接运用四则运算中各部分之间的关系去解。如x—8=12
(1)①加数+加数=和,②一个加数=和-另一个加数。
(2)①被减数-减数=差,②减数=被减数-差,③被减数=差+减数。
(3)①被乘数×乘数=积,②一个因数=积÷另一个因数。
(4)①被除数÷除数=商,②除数=被除数÷商,③被除数=除数×商。
2、先把含有未知数x的项看作一个数,然后再解。如3x+20=41,先把3x看作一个数,然后再解。
3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4—x=4.2,要先求出2.5×4的积,使方程变形为10—x=4.2,然后再解。
4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20,先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。
十一、比和比例。
(一)比和比例应用题。
在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。
(二)解题策略。
按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答
(三)正、反比例应用题的解题策略。
1、审题,找出题中相关联的两个量。
2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。
3、设未知数,列比例式。
4、解比例式。
5、检验,写答语。
(四)数感和符号感。
1、在数学教学中发展学生的数感主要指,使学生具有应用数字表示具体的数据和数量关系的能力;能够判定不同的算术运算,有能力进行计算,并具有选择适当方法(心算、笔算、使用计算器)实施计算的经验;能根据数据进行推论,并对数据和推论的精确性和可靠性进行检验,等等。
2、培养学生的数感的目的就在于使学生学会数学地思考,学会用数学的方法理解和解释现实问题。
3、数感的培养有利于学生提出问题和解决问题能力的提高。学生在遇到问题时,自觉主动地与一定的数学知识和技能建立起联系,这样才有可能建构与具体事物相联系 的数学模型。具备一定的数感是完成这类任务的重要条件。如,怎样为参加学校运动会的全体运动员编号?这是一个实际问题,没有固定的解法,你可以用不同的方 式编,而不同的编排方案可能在实用性和便捷性上是不同的。如,从号码上就可以分辨出年级和班级,区分出男生和女生,或很快的知道一名队员是参加哪类项目。
4、数概念本身是抽象的,数概念的建立不是一次完成的,学生理解和掌握数的概念要经历一个过程。让学生在认识数的过程中,更多地接触和经历有关的情境和实例, 在现实的背景下感受和体验会使学生更具体更深刻地把握数的概念,建立数感。在认识数的过程中,让学生说一说自己身边的数,生活中用到的数,如何用数表示周 围的事物等,会让学生感觉到数就在自己身边,运用数可以简单明了地表示许多现象。估计一页书的字数,一本书有多少页,一把黄豆有多少粒等,这些对具体数量 的感知与体验,是学生建立数感的基础,这对学生理解数的意义会有很大的帮助。
5、无论在哪个学段,都应鼓励学生用自己独特的方式表示具体的情境中的数量关系和变化规律,这是发展学生符号感的决定性因素。
6、引进字母表示,是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步。尽可能从实际问题中引入,使学生感受到字母表示的意义。
第一,用字母表示运算法则、运算定律以及计算公式。算法的一般化,深化和发展了对数的认识。
第二,用字母表示现实世界和各门学科中的各种数量关系。例如,匀速运动中的速度v、时间t和路程s的关系是s=vt。
第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题。例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程。
7、字母和表达式在不同场合有不同的意义。如:5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化。
8、如何培养学生的符号感。
要尽可能在实际问题情境中帮助学生理解符号以及表达式、关系式意义,在解决实际问题中发展学生的符号感。必须要对符号运算进行训练,要适当地、分阶段地进行一定数量的符号运算。但是并不主张进行过繁的形式运算训练。
学生的符号感的发展不是一朝一夕就可以完成的,而是应该贯穿于数学学习的全过程,伴随着学生数学思维的提高逐步发展。
十二、量的计算。
1、事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。
2、数+单位名称=名数。只带有一个单位名称的叫做单名数。带有两个或两个以上单位名称的叫做复名数高级单位的数如把米改成厘米 低级单位的数如把厘米改成米
3、(1)只带有一个单位名称的数叫做单名数。如:5小时,3千克。只有一个单位的)
(2)带有两个或两个以上单位名称的叫做复名数。如:5小时6分,3千克500克(有两个单位的)
(3)56平方分米=(0.56)平方米,就是单名数转化成单名数。
(5)560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子。
4、高级单位与低级单位是相对的。比如,’米’相对于分米,就是高级单位,相对于千米就是低级单位。
5、常用计算公式表。
(1)长方形面积=长×宽,计算公式s=a b
(2)正方形面积=边长×边长,计算公式s=a×a
(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)×2
(4)正方形周长=边长× 4,计算公式s= 4a
(5)平形四边形面积=底×高,计算公式s=ah.
(6)三角形面积=底×高÷2,计算公式s=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式v=abh
(9)圆的面积=圆周率×半径平方,计算公式s=лr^2
(10)正方体体积=棱长×棱长×棱长,计算公式v=a^3
(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh
(12)圆柱的体积=底面积×高,计算公式v=s h
6、1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天
7、闰年年份是4的倍数,整百年份须是400的倍数。
8、平年一年365天,闰年一年366天。
9、公元1年—100年是第一世纪,公元1901—2000是第二十世纪。
十三、平面图形的认识和计算。
(一)三角形。
1、三角形是由三条线段围成的图形。它具有稳定性。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。一个三角形有三条高。
2、三角形的内角和是180度
3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形。
4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形。
(二)四边形。
1、四边形是由四条线段围成的图形。
2、任意四边形的内角和是360度。
3、只有一组对边平行的四边形叫梯形。
4、两组对边分别平行的四边形叫平行四边形,它容易变形。长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。
(三)圆。
圆是平面上的一种曲线图形。同圆或等圆的直径都相等,直径等于半径的2倍。圆有无数条对称轴。圆心确定圆的位置,半径确定圆的大小。
(四)扇形。
由圆心角的两条半径和它所对的弧围成的图形。扇形是轴对称图形。
(五)轴对称图形。
1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴。
2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等。
(六)周长和面积。
1、平面图形一周的长度叫做周长。
2、平面图形或物体表面的大小叫做面积。
3、常见图形的周长和面积计算公式。