初中数学生活小知识(初中数学生活小知识图片)

本文目录一览:

  • 1、初中数学基础知识整理归纳
  • 2、数学初中知识点总结归纳
  • 3、初中数学知识有哪些?
  • 4、关于初中数学知识点总结归纳
  • 5、初中数学基础知识大全 初中数学基础知识介绍
  • 6、初中数学知识点有哪些?

初中数学基础知识整理归纳

数学,是一门关于如何思维的科学,也就是教给我们如何分析和解决事物之间数量与数量的关系,分析和解决点与线、线与线在空间之间的关系。下面给大家带来一些关于初中基础知识整理归纳,希望对大家有所帮助。

初中数学基础知识整理归纳1

一元一次方程根的情况

△=b2-4ac

当△0时,一元二次方程有2个不相等的实数根;

当△=0时,一元二次方程有2个相同的实数根;

当△0时,一元二次方程没有实数根 span=””

初中数学基础知识整理归纳2

平行四边形的性质:

①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:

①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:

①N边形的内角和等于(N-2)180度

②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

初中数学基础知识整理归纳3

常用数学公式

公式分类 公式表达式

乘法与因式分解 a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

一元二次方程的解 -b+√(b2-4ac)/2a

-b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a

X1-X2=c/a 注:韦达定理

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R

注:其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB

注:角B是边a和边c的夹角

初中数学基础知识整理归纳4

有理数大小比较:

1.有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

有理数大小比较的三种 方法 :

1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小。

2.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数。

3.作差比较:

若a﹣b0,则ab;

若a﹣b0,则a

若a﹣b=0,则a=b。

初中数学基础知识整理归纳相关 文章 :

★ 初中数学基础知识点归纳总结

★ 初中数学基础知识点总结

★ 初中数学知识点整理:

★ 初中数学知识点总结归纳

★ 初中数学知识点整理

★ 初中数学知识点总结

★ 2020初中数学知识点总结归纳

★ 初三数学知识点考点归纳总结

★ 2020最新初中数学知识点总结

★ 初中七年级数学知识点归纳整理

数学初中知识点总结归纳

初中生学习数学要特别注意知识点的总结,下面为大家总结了初中数学重点知识点,仅供大家参考。

有理数

1.有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

“大”减“小”是指绝对值的大小。

2.有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

3.有理数混合运算的四种运算技巧

转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

整式的加减

1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

实数

1.平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

2.立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质

①在实数范围内,任何实数的立方根只有一个

②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0

3.实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

分式方程的解法

1.一般解法:去分母法,即方程两边同乘以最简公分母。

2.特殊解法:换元法。

3.验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

说明:解分式方程,一般先考虑换元法,再考虑去分母法。

全等三角形的判定定理

1.边边边:三边对应相等的两个三角形全等。

2.边角边:两边和它们的夹角对应相等的两个三角形全等。

3.角边角:两角和它们的夹边对应相等的两个三角形全等。

4.角角边:两角和其中一个角的对边对应相等的两个三角形全等。

5.斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。

图形的初步认识

1.几何图形:即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。

2.平面图形:平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形等。

3.立体图形:是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。

4.展开图:有些立体图形是有一些平面图形围成的,将它们的表面适当剪开,可以展成平面图形,这样的平面图形称为相应立体图形的展开图。

5.点,线,面,体

(1)图形是由点,线,面构成的。

(2)线与线相交得点,面与面相交得线。

(3)点动成线,线动成面,面动成体。

一元一次方程

1.定义:

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

2.解一元一次方程的步骤

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1

初中数学知识有哪些?

《01.初中数学试讲》百度网盘资源免费下载

链接:

?pwd=d3fu 提取码: d3fu

01.初中数学试讲|初中数学|3、初中数学教材梳理班(重点看)|2、初中数学试讲|1、初中数学试讲+答辩理论课(王威)(14讲)重点看|TransferConverted|第9讲_有理数加减法_recv.mp4|第8讲_一次函数_recv.mp4|第7讲_二元一次方程组_recv.mp4|第6讲_义务教育数学课程标准解读4_recv.mp4|第5讲_义务教育数学课程标准解读3_recv.mp4|第4讲_义务教育数学课程标准解读2_recv.mp4|第3讲_义务教育数学课程标准解读1_recv.mp4|第2讲_试讲理论2_recv.mp4|第1讲_试讲理论1_recv.mp4

关于初中数学知识点总结归纳

数学已成为许多国家及地区的 教育 范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了初中数学知识点 总结 归纳,供大家阅读参考。

初中数学知识点总结归纳

一: 数轴

11 有向直线

在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相

规定了正方向的直线,叫做有向直线,读作有向直线l

12 数轴

我们把数轴上任意一点所对应的实数称为点的坐标

对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化

数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值

二:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

三:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

四:点的坐标的性质

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

五:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

六:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定 方法 :①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初中数学知识点

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① ②

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减.

本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.

体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

关于初中数学的知识点

一、平移变换:

1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2。性质:(1)平移前后图形全等;

(2)对应点连线平行或在同一直线上且相等。

3。平移的作图步骤和方法:

(1)分清题目要求,确定平移的方向和平移的距离;

(2)分析所作的图形,找出构成图形的关健点;

(3)沿一定的方向,按一定的距离平移各个关健点;

(4)连接所作的各个关键点,并标上相应的字母;

(5)写出结论。

二、旋转变换:

1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

(3)旋转过程中旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

2。性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

3。旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

常见考法

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目。

误区提醒

(1)弄反了坐标平移的上加下减,左减右加的规律;

(2)平移与旋转的性质没有掌握。

学好数学的方法

1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!

2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到 笔记本 上!保持高效率!

3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!

4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!

5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!!

总之,学习数学,不要怕难,不要怕累,不要怕问!

初中数学知识点总结归纳相关 文章 :

★ 初中数学基础知识整理归纳

★ 初中数学知识点总结

★ 初中数学重点知识点的归纳总结

★ 初中数学知识点归纳有哪些

★ 初中数学知识点总结归纳

★ 初中部数学学习方法总结

★ 初中数学圆的知识点归纳

★ 初一数学学习方法总结

var _hmt = _hmt || []; (function() { var hm = document.createElement(“script”); hm.src = “”; var s = document.getElementsByTagName(“script”)[0]; s.parentNode.insertBefore(hm, s); })();

初中数学基础知识大全 初中数学基础知识介绍

1、知识点:一元二次方程的基本概念

一元二次方程3×2+5x-2=0的常数项是-2。

一元二次方程3×2+4x-2=0的一次项系数为4,常数项是-2。

一元二次方程3×2-5x-7=0的二次项系数为3,常数项是-7。

把方程3x(x-1)-2=-4x化为一般式为3×2-x-2=0.

2、知识点:直角坐标系与点的位置

直角坐标系中,点(3,0)在y轴上。

直角坐标系中,x轴上的任意点的横坐标为0。

直角坐标系中,点A(1,1)在第一象限。

角坐标系中,点A(-2,3)在第四象限。

直角坐标系中,点(-2,1)在第二象限。

3、知识点:已知自变量的值求函数值

当x=2时,函数y=的值为1。

当x=3时,函数y=的值为1。

当x=-1时,函数y=的值为1。

4、知识点:基本函数的概念及性质

函数y=-8x是一次函数。

函数y=4x+1正比例函数。

函数是反比例函数。

抛物线y=-3(x-2)2-5的开口向下。

抛物线y=4(x-3)2-10的对称轴是x=3。

抛物线的顶点坐标是(1,2)。

反比例函数的图象在第一、三象限。

初中数学知识点有哪些?

01

初中数学知识点:一元二次方程的基本概念。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。直角坐标系与点的位置,特殊三角函数值,圆的基本性质,直线与圆的位置关系等等。

一元二次方程:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。cos30°=1,tan45°=1。

圆的基本性质

1、半圆或直径所对的圆周角是直角。

2、任意一个三角形一定有一个外接圆。

3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4、在同圆或等圆中,相等的圆心角所对的弧相等。

5、同弧所对的圆周角等于圆心角的一半。

6、同圆或等圆的半径相等。

7、过三个点一定可以作一个圆。

8、长度相等的两条弧是等弧。

9、在同圆或等圆中,相等的圆心角所对的弧相等。

10、经过圆心平分弦的直径垂直于弦。

上一篇
下一篇

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

返回顶部